Buscar este blog

jueves, 2 de diciembre de 2010

Planetas Extrasolares

Planeta extrasolar

Se denomina planeta extrasolar o exoplaneta a un planeta que orbita una estrella diferente al Sol y que, por tanto, no pertenece al Sistema Solar. Los planetas extrasolares se convirtieron en objeto de investigación científica en el siglo XIX. Muchos astrónomos suponían que existían, pero no había forma de saber qué tan comunes eran o cómo podrían ser similares a los planetas de nuestro sistema solar. La primera detección confirmada se hizo en 1992, con el descubrimiento de varios planetas de masa terrestre orbitando el pulsar PSR B1257+12.[1] La primera detección confirmada de un planeta extrasolar que orbita alrededor de una estrella con características de la secuencia principal similar a nuestro Sol, se hizo en 1995 por los astrónomos Michel Mayor y Didier Queloz, el planeta descubierto fue 51 Pegasi b. Desde entonces se han sucedido en ritmo creciente los descubrimientos de nuevos planetas.

Big Bang

El Big Bang, literalmente gran estallido, constituye el momento en que de la "nada" emerge toda la materia, es decir, el origen del Universo. La materia, hasta ese momento, es un punto de densidad infinita, que en un momento dado "explota" generando la expansión de la materia en todas las direcciones y creando lo que conocemos como nuestro Universo.

Inmediatamente después del momento de la "explosión", cada partícula de materia comenzó a alejarse muy rápidamente una de otra, de la misma manera que al inflar un globo éste va ocupando más espacio expandiendo su superficie. Los físicos teóricos han logrado reconstruir esta cronología de los hechos a partir de un 1/100 de segundo después del Big Bang. La materia lanzada en todas las direcciones por la explosión primordial está constituida exclusivamente por partículas elementales: Electrones, Positrones, Mesones, Bariones, Neutrinos, Fotones y un largo etcétera hasta más de 89 partículas conocidas hoy en día.

En 1948 el físico ruso nacionalizado estadounidense George Gamow modificó la teoría de Lemaître del núcleo primordial. Gamow planteó que el Universo se creó en una explosión gigantesca y que los diversos elementos que hoy se observan se produjeron durante los primeros minutos después de la Gran Explosión o Big Bang, cuando la temperatura extremadamente alta y la densidad del Universo fusionaron partículas subatómicas en los elementos químicos.

Cálculos más recientes indican que el hidrógeno y el helio habrían sido los productos primarios del Big Bang, y los elementos más pesados se produjeron más tarde, dentro de las estrellas. Sin embargo, la teoría de Gamow proporciona una base para la comprensión de los primeros estadios del Universo y su posterior evolución. A causa de su elevadísima densidad, la materia existente en los primeros momentos del Universo se expandió con rapidez. Al expandirse, el helio y el hidrógeno se enfriaron y se condensaron en estrellas y en galaxias. Esto explica la expansión del Universo y la base física de la ley de Hubble.

Según se expandía el Universo, la radiación residual del Big Bang continuó enfriándose, hasta llegar a una temperatura de unos 3 K (-270 °C). Estos vestigios de radiación de fondo de microondas fueron detectados por los radioastrónomos en 1965, proporcionando así lo que la mayoría de los astrónomos consideran la confirmación de la teoría del Big Bang.

Uno de los problemas sin resolver en el modelo del Universo en expansión es si el Universo es abierto o cerrado (esto es, si se expandirá indefinidamente o se volverá a contraer).

Un intento de resolver este problema es determinar si la densidad media de la materia en el Universo es mayor que el valor crítico en el modelo de Friedmann. La masa de una galaxia se puede medir observando el movimiento de sus estrellas; multiplicando la masa de cada galaxia por el número de galaxias se ve que la densidad es sólo del 5 al 10% del valor crítico. La masa de un cúmulo de galaxias se puede determinar de forma análoga, midiendo el movimiento de las galaxias que contiene. Al multiplicar esta masa por el número de cúmulos de galaxias se obtiene una densidad mucho mayor, que se aproxima al límite crítico que indicaría que el Universo está cerrado.

La diferencia entre estos dos métodos sugiere la presencia de materia invisible, la llamada materia oscura, dentro de cada cúmulo pero fuera de las galaxias visibles. Hasta que se comprenda el fenómeno de la masa oculta, este método de determinar el destino del Universo será poco convincente.

Muchos de los trabajos habituales en cosmología teórica se centran en desarrollar una mejor comprensión de los procesos que deben haber dado lugar al Big Bang. La teoría inflacionaria, formulada en la década de 1980, resuelve dificultades importantes en el planteamiento original de Gamow al incorporar avances recientes en la física de las partículas elementales. Estas teorías también han conducido a especulaciones tan osadas como la posibilidad de una infinidad de universos producidos de acuerdo con el modelo inflacionario.

Sin embargo, la mayoría de los cosmólogos se preocupa más de localizar el paradero de la materia oscura, mientras que una minoría, encabezada por el sueco Hannes Alfvén, premio Nobel de Física, mantienen la idea de que no sólo la gravedad sino también los fenómenos del plasma, tienen la clave para comprender la estructura y la evolución del Universo.

Aca dejo un link de la pagina de Wikipedia que es muy interesante mirarlo porque contiene mucha informacion http://es.wikipedia.org/wiki/Teor%C3%ADa_del_Big_Bang

Universo en expansion

Ley de Hubble

La ley de Hubble es una ley de cosmología física que establece que el corrimiento al rojo de una galaxia es proporcional a la distancia a la que ésta se encuentra.
La ley fue formulada por Edwin Hubble y su colaborador Milton Humason en 1929 después de cerca de una década de observaciones. Es considerada como la primera evidencia observacional del paradigma de la expansión del universo y actualmente sirve como una de las piezas más citadas como prueba de soporte del Big Bang, según la Ley de Hubble, una medida de la inercia de la expansión del universo viene dada por la Constante de Hubble. A partir de esta relación observacional se puede inferir que las galaxias se alejan unas de otras a una velocidad proporcional a su distancia, relación más general que se conoce como relación velocidad-distancia y que a veces es confundida con la ley de Hubble. Los cálculos más recientes de la constante, utilizando los datos del satélite WMAP, empezaron en 2003, permitieron dar el valor de 71 ± 4(km/s)/Mpc para esta constante. En 2006 los nuevos datos aportados por este satélite dieron el valor de 70 (km/s)/Mpc, +2.4/-3.2. De acuerdo con estos valores, el universo tiene una edad próxima a los 14.000 millones de años.

Historia

Una década antes de que Hubble hiciera sus observaciones, varios físicos y matemáticos habían establecido una consistente teoría de la relación entre el espacio y el tiempo utilizando las ecuaciones de campo de Einstein de la relatividad general. Aplicando los principios generales a la naturaleza del universo se produjo una solución dinámica que chocó con la entonces prevaleciente noción de un universo estático.
En 1922, Alexander Friedmann halló sus ecuaciones de Friedmann a partir de las ecuaciones de campo de Einstein, demostrando que el universo se puede expandir a una velocidad calculable por las ecuaciones.El parámetro utilizado por Friedman es conocido actualmente como el factor de escala con el que puede ser considerada como una forma invariante en escala de la constante de proporcionalidad de la ley de Hubble. Georges Lemaître independientemente encontró una solución similar en 1927. Las ecuaciones de Friedmann se obtienen insertando la métrica de un universo homogéneo e isótropo en las ecuaciones de campo de Einstein para un fluido con una densidad y una presión dada. Esta idea de un espacio-tiempo expandiéndose eventualmente conduciría a las teorías cosmológicas del Big Bang y del Estado Estacionario.
Antes de la aparición de la cosmología moderna, había una gran discusión sobre el tamaño y la forma del universo. En 1920, tuvo lugar el famoso debate Shapley-Curtis entre Harlow Shapley y Heber D. Curtis sobre el tema. Shapley apoyaba la idea de un pequeño universo del tamaño de la Vía Láctea y Curtis argumentaba que el universo era mucho mayor. El objeto del debate sería resuelto en la década siguiente con las observaciones mejoradas de Hubble.
Edwin Hubble pasó gran parte de su trabajo profesional en la astronomía observacional en el Observatorio Monte Wilson, el telescopio más potente del mundo del momento. Sus observaciones de las estrellas variables cefeidas en nebulosas espirales le permitían calcular las distancias a estos objetos. Sorprendentemente, estos objetos se descubrió que estaban a distancias que les ubicaban fuera de la Vía Láctea. Las nebulosas fueron descritas por primera vez como "islas de universos" y fue sólo después del descubrimiento de la "galaxia" moniker que se aplicaría a ellas.
En los años 20, Hubble combinó estas medidas de distancias de galaxias con las medidas de Vesto Slipher a partir del corrimiento al rojo debido a la recesión o alejamiento relativo entre ellas según el Efecto Doppler, Hubble descubrió entre ambas magnitudes una relación lineal, es decir, cuanto más lejos se halla una galaxia, mayor es su corrimiento al rojo. Al coeficiente de proporcionalidad se lo denomina Constante de Hubble, H0 Aunque había una dispersión considerable (ahora se sabe que es causada por la velocidad peculiar), Hubble pudo dibujar una tendencia lineal de 46 galaxias que él había estudiado y obtuvo un valor para la constante de Hubble de 500 km/s/Mpc (mucho mayor que el valor aceptado actualmente debido a los errores en sus calibraciones de la distancia). En 1958, se obtuvo la primera gran estimación de H0, 75 km/s/Mpc, fue publicada por Allan Sandage.
Hubble interpretó esta relación como una prueba de que el universo estaba en expansión. Posteriormente, los modelos teóricos cosmológicos basados en la Teoría de la Relatividad General de Albert Einstein permitieron explicar esta expansión, ya que surge de forma natural a partir las ecuaciones de campo de la teoría. El propio Einstein, quien creía en un principio en un universo estático, introdujo de forma artificial un término extra a estas ecuaciones, denominado constante cosmológica, para evitar el fenómeno de la expansión. Tras los resultados publicados por Hubble, Einstein se retractó y retiró este término, al que denominó "el mayor error de mi carrera". Einstein haría un famoso viaje a Monte Wilson en 1931 para agradecer a Hubble que proporcionara las bases observacionales de la cosmología moderna.

Historia del Universo

Cuadro que explica desde el incio del universo segun la teoria del Big Bang.



Momento  Suceso 
Big Bang  Densidad infinita, volumen cero. 
10 e-43 segs.  Fuerzas no diferenciadas 
10 e-34 segs.  Sopa de partículas elementales 
10 e-10 segs.  Se forman protones y neutrones 
1 seg.  10.000.000.000 º. Universo tamaño Sol 
3 minutos  1.000.000.000 º. Nucleos de átomos 
30 minutos  300.000.000 º. Plasma 
300.000 años  Átomos. Universo transparente 
1.000.000 años  Gérmenes de galaxias 
100 millones de años  Primeras galaxias 
1.000 millones de años  Estrellas. El resto, se enfría 
5.000 millones de años  Formación de la Vía Láctea 
10.000 millones de años  Sistema Solar y Tierra 

Historia del Universo


El universo nace en circunstancias desconocidas. Según los conocimientos científicos del Bing Bang, surgió de una “singularidad”, un punto de densidad infinita en el que explotan las leyes del espacio y del tiempo.
Las teorías actuales apuntan auna era de “inflación” rápida; una expansión tan acelerada que supero la velocidad de la luz. Es posible que el universo, en principio del tamaño de una bola diminuta de menos de un milímetro, se haya expandido mucho más allá de las distintas que en la actualidad pueden observar nuestros telescopios más potentes.
La fuerza primitiva que se mueve dejando una serie de partículas elementales electrones, quarks, gluones, y neutrinos… que sobrevienen en un entorno con temperaturas elevadísimas(1027°c). Agotada, la fuerza primitiva del universo se disuelve en gravedad y otras fuerzas que actúan a nivel nuclear. Se aplican ya las leyes de Einstein. El universo sigue expandiéndose y enfriándose.
La temperatura desciende hasta mil billones de grados centígrados. Aparecen las cuatro fuerzas elementales de la física: la gravedad, la fuerza nuclear fuerte, la fuerza nuclear débil y el electromagnetismo. Ha llegado la hora de la creación de partículas más complejas.
Los quarks empiezan a formar grupos de tres, dando lugar a los primeros protones y neutrones, la estructura básica de los átomos. La materia y la antimateria chocan e inician su destrucción mutua, dejando por alguna razón desconocida un resto de materia pura. La temperatura del universo ha descendido hasta mil millones de grados centígrados.
Neutrones y protones se combinan para formar los núcleos mas básicos del átomo: los de hidrogeno, helio y litio. El universo se enfría a una velocidad tan extraordinaria que no queda calor suficiente para formar elementos mas pesados.
La luz no logra llegar al universo primitivo a causa de su espesa mezcla de electrones protones (propagadores de luz y otras ondas energéticas). Al llegar a 3000°C, los elementos consiguen finalmente conectarse a la estructura básica del átomo, liberando fotones y creando la primera señal electromagnetica del universo (todavía hoy se sigue oyendo su rastro). El espacio es ahora transparente.
La era cósmica oscura concluye con la formación de las primeras estrellas del universo en medio de densas nubes de gas. Compactado por la gravedad, el hidrogeno que contienen esas estrellas se funde en helio, derramando luz y calor en el espacio. Violentas y calurosas reacciones nucleares van generando nuevo elementos. Se forman así el carbono, el oxigeno y el magnesio. Estrellas gigantes, llamadas supernovas, expiran con tremendas explosiones y liberando materia pesada a través de las galaxias en evolución.
Se forman nuestro sol a la vez que los planetas del sistema solar, posiblemente a raíz del cataclismo provocado por una supernova, que fue produciendo acumulaciones graduales de polvo, piedra, y gas hasta convertirse en cuerpos esféricos. En los planetas cercanos al sol (mercurio, Venus la tierra), la mayoría del gas ligero se ha quemado, dejando en la tierra una mezcla compuesta principalmente por hierro, níquel, carbono, oxigeno y magnesio. Los planetas más distantes como Júpiter y saturno, siguen siendo gigantescos globos de gas ligero.
Las primeras células empiezan a poblar la tierra. Según las antiguas teorías los componentes fundamentales de la vida, como los aminoácidos, procedían de la acción de relámpagos sobre una mezcla primitiva de agua, metano e hidrogeno. Las teorías contemporáneas sostienen que los asteroides que cayeron en la tierra pudieron traer consigo las simientes de la vida orgánica.
Los organismos multicelulares se propagan, ayudados por el inicio de la reproducción sexual. Los primeros vertebrados aparecen, seguidos por los dinosaurios, los reptiles, los mamíferos y los vegetales. Hace unos cinco millones de años, varias especies de homínidos empiezan a vivir en África. El Homo Sapiens hace más de 100.000 años, y con él surgen la lengua, la cultura y la sociedad humana.

Cosmologia Fisica

(texto copiado desde Wikipedia, me resulto muy interesante como se detallan los acontecimientos de la Cosmologia Fisica por esa razon lo copie tal cual)

Se entiende por cosmología física el estudio del origen, la evolución y el destino del Universo utilizando los modelos terrenos de la física. La cosmología física se desarrolló como ciencia durante la primera mitad del siglo XX como consecuencia de los acontecimientos detallados a continuación:
En 1965 Arno Penzias y Bob Wilson de los laboratorios Bell Telephone descubren la señal de radio que fue rápidamente interpretada como la radiación de fondo de microondas que supondría una observación crucial que convertiría al modelo del Big Bang o "de la Gran Explosión" en el modelo físico estándar para describir el universo. Durante el resto del siglo XX se produjo la consolidación de este modelo y se reunieron las evidencias observacionales que establecen los siguientes hechos fuera de cualquier duda razonable:
  • El universo está en expansión, en el sentido de que la distancia entre cualquier par de galaxias lejanas se está incrementando con el tiempo.
  • La dinámica de la expansión está con muy buena aproximación descrita por la Teoría General de la Relatividad de Einstein.
  • El universo se expande a partir de un estado inicial de alta densidad y temperatura donde se formaron los elementos químicos ligeros, estado a veces denominado "Big Bang" o "Gran Explosión".
A pesar de que el modelo del Big Bang es un modelo teórica y observacionalmente bastante robusto y ampliamente aceptado entre la comunidad científica, hay algunos aspectos que todavía quedan por resolver:
  • En el momento después del Big Bang las partículas elementales aparecieron, los quarks arriba en los protones y los quarks abajo en los neutrones, por ser de la misma carga eléctrica, no se habrían podido unir gracias a la interacción electromagnética, es inútil recurrir a la interacción nuclear fuerte, pues ésta sólo tiene un alcance del tamaño máximo de un núcleo atómico y además porque la interacción electromagnética tiene un alcance gigantesco y si el universo se agrandó en un sólo segundo cien octillones de veces, en este brevísimo lapso de tiempo la interacción nuclear fuerte no podría unir la casi totalidad (si no es la totalidad) de los quarks.

Cosmologia

Cosmología, del griego: κοσμολογία (cosmologia, κόσμος (cosmos) orden + λογια (logia) discurso) es el estudio a gran escala de la estructura y la historia del Universo en su totalidad y, por extensión, del lugar de la humanidad en él.

Aunque la palabra «cosmología»(utilizada por primera vez en 1730 en el Cosmologia Generalis de Christian Wolff), el estudio del Universo tiene una larga historia involucrando a la física, la astronomía, la filosofía, el esoterismo y a la religión.
El nacimiento de la cosmología moderna puede situarse en 1700 con la hipótesis de que las estrellas de la Vía Láctea (la franja de luz blanca visible en las noches serenas de un extremo a otro de la bóveda celeste), pertenecen a un sistema estelar de forma discoidal, del cual el propio Sol forma parte; y que otros cuerpos nebulosos visibles con el telescopio son sistemas estelares similares a la Vía Láctea, pero muy lejanos.